Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(41): 61856-61869, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34431055

RESUMO

The current investigation focuses on a systematic study of application of two dried algal biomass (i.e., Nostoc sp. and Turbinaria vulgaris) in removal of Cr(VI) from synthetic solution as well as tannery industrial wastewater. The optimized conditions for Cr(VI) removal are nearly same for the both the biosorbents (i.e., pH 2.8, initial Cr(VI) concentration 100 mg L-1, biomass dosage of 1.2g L-1, contact time 120 and 110 min). Nostoc sp. (qmax=23.94mg g-1) was observed to possess a superior removal capability when compared to Turbinaria vulgaris (qmax=21.8mg g-1). Desorption studies were performed with four different desorbing agents. Application study was conducted using tannery wastewater with Nostoc sp. and 94.20% removal of Cr(VI) was obtained. Hence, this study revealed that Nostoc sp. and T. vulgaris both have great potential to be an environment friendly and economic biosorbent for removal of Cr(VI) containing industrial effluent.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Biomassa , Cromo/análise , Concentração de Íons de Hidrogênio , Águas Residuárias , Poluentes Químicos da Água/análise
2.
Nanomaterials (Basel) ; 10(9)2020 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-32961689

RESUMO

A significant amount of work on electrochemical energy storage focuses mainly on current lithium-ion systems with the key markets being portable and transportation applications. There is a great demand for storing higher capacity (mAh/g) and energy density (Wh/kg) of the electrode material for electronic and vehicle applications. However, for stationary applications, where weight is not as critical, nickel-metal hydride (Mi-MH) technologies can be considered with tolerance to deep discharge conditions. Nickel hydroxide has gained importance as it is used as the positive electrode in nickel-metal hydride and other rechargeable batteries such as Ni-Fe and Ni-Cd systems. Nickel hydroxide is manufactured industrially by chemical methods under controlled conditions. However, the electrochemical route is relatively better than the chemical counterpart. In the electrochemical route, a well-regulated OH- is generated at the cathode forming nickel hydroxide (Ni(OH)2) through controlling and optimizing the current density. It produces nickel hydroxide of better purity with an appropriate particle size, well-oriented morphology, structure, et cetera, and this approach is found to be environmentally friendly. The structures of the nickel hydroxide and its production technologies are presented. The mechanisms of product formation in both chemical and electrochemical preparation of nickel hydroxide have been presented along with the feasibility of producing pure nickel hydroxide in this review. An advanced Ni(OH)2-polymer embedded electrode has been reported in the literature but may not be suitable for scalable electrochemical methods. To the best of our knowledge, no such insights on the Ni(OH)2 synthesis route for battery applications has been presented in the literature.

3.
Curr Org Synth ; 16(8): 1161-1165, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31984922

RESUMO

BACKGROUND: Recently, there has been a lot of scientific interest in exploring the syntheses of oxygen and nitrogen-containing heterocyclic compounds due to their pharmacological activities. In addition, benzisoxazoles play a very important role in organic synthesis as key intermediates. OBJECTIVE: In this paper, we focused on developing a novel synthetic route for biologically active arylisoxazoles under normal conditions, and simplified it to get high purities and yields, and also reported their anti-inflammatory activities. METHODS: An efficient and simple method has been explored for the synthesis of novel 3-methyl arylisoxazoles from o-nitroaryl halides via o-ethoxyvinylnitroaryls, using dihydrated stannous chloride (SnCl2.2H2O) in MeOH / EtOAc (1:1) via Domino rearrangement in one pot synthesis. RESULTS: We synthesized novel 3-methylarylisoxazoles from o-nitroarylhalides via o-ethoxyvinylnitroaryls, using dihydrated stannous chloride (SnCl2.2H2O) in MeOH / EtOAc (1:1) via domino rearrangement. In this reduction, nitro group and ethoxy vinyl group change to the functional acyl ketones, followed by hetero cyclization. Here, the reaction proceeds without the isolation of intermediates like 2-acylnitroarenes and 2- acylanilines. All the synthesized compounds were completely characterized by the NMR and mass spectra. The compounds were also explored for their anti-inflammatory activity by carrageenan-induced inflammation in the albino rats (150-200 g) of either sex used in this entire study with the use of Diclofenac sodium as the standard drug. The initial evaluations identified leading targets with good to moderate anti-inflammatory activity. CONCLUSION: A simple, one-pot and convenient method has been explored for the synthesis of novel 3- methylarylisoxazoles with high purity and reaction yields. All the compounds 3a, 3c, 3d, 3f, 3g and 3h exhibited 51-64% anti-inflammatory activities.


Assuntos
Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Isoxazóis/síntese química , Isoxazóis/farmacologia , Animais , Carragenina/efeitos adversos , Carragenina/química , Complexos de Coordenação/química , Ciclização , Diclofenaco/química , Diclofenaco/farmacologia , Modelos Animais de Doenças , Desenho de Fármacos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Cetonas/química , Estrutura Molecular , Oxirredução , Ratos , Relação Estrutura-Atividade , Compostos de Estanho/química
4.
Nanomaterials (Basel) ; 7(11)2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29088061

RESUMO

A facile hydrothermal route to control the crystal growth on the synthesis of Co3O4 nanostructures with cube-like morphologies has been reported and tested its suitability for supercapacitor applications. The chemical composition and morphologies of the as-prepared Co3O4 nanoparticles were extensively characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Varying the temperature caused considerable changes in the morphology, the electrochemical performance increased with rising temperature, and the redox reactions become more reversible. The results showed that the Co3O4 synthesized at a higher temperature (180 °C) demonstrated a high specific capacitance of 833 F/g. This is attributed to the optimal temperature and the controlled growth of nanocubes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...